Research Projects All Projects
Projects

Quick links

Structural and functional studies of Ryegrass mottle virus-encoded proteins

 

 

Funding: European Regional Development Fund (ERDF) “On Implementation of Activity 1.1.1.2 “Post-doctoral Research Aid” of the Specific Aid Objective 1.1.1 “To increase the research and innovative capacity of scientific institutions of Latvia and the ability to attract external financing, investing in human resources and infrastructure” of the Operational Programme “Growth and Employment”

Project Title: Structural and functional studies of Ryegrass mottle virus-encoded proteins

Project No.: 1.1.1.2/VIAA/3/19/463

Period: 36 months (1 March 2020 – 28 February 2023)

Project costs: 133 304.57.00 EUR

Project implementer: Dr. biol. Ina Baļķe

 

The aim of the project is to use Ryegrass mottle virus (RGMoV, Sobemovirus) as a model for identification of virus encoded protein structural and functional properties to better understand there roll during virus life cycle. Sobemoviruses are ss (+) RNA viruses that infect both monocotyledons and dicotyledons. Because of their small (4-4.5 bp) genomes and simple structures (encoded by 5 ORFs, not fragmented), they can be used as model objects for viral studies. There genomes are relatively well characterized, but their encoded protein structures and, in particular their role and interactions in the infection process remain to be cleared up. Globalization, the exchange of infected plant material and the introduction of new crop varieties, have contributed to the spread of viruses. Several members of this genus are economically significant pathogens. For virus protein 3D structure determination corresponding protein coding sequences will be cloned in to E.coli expression system vectors and overexpressed, purified and used for X-ray crystallography or Crio-EM, KMR if needed. For protein functional study localization and interaction experiments in protoplasts will be performed for proteins with fluorescent tags (whole protein or split). Fluorescent and confocal microscopy will be used as visualization methods. In turn, by studying the 3D structure of proteins, it is possible to determine the function of an unknown protein from the structural analogues in the databases. This information will spread light upon virus protein roll in virus life cycle and reveal crucial steps in it. That can be used for virus resistant plant development and used for other virus (mammalian) research. Also important information about potential use of virus vector for recombinant protein expression in plants will be inquired. In some way, the project is unique by carrying out studies of protein-protein interactions in protoplasts, as well as obtaining a 3D structure/s for uncharacterised virus proteins, providing high-quality information to the field of virology as a whole.

Information published 02.03.2020.




Mājas lapas izstrādi finansēja ERAF 2.1.1.2. aktivitātes projekts Nr. 2010/0196/2DP/2.1.1.2.0/10/APIA/VIAA/004 "Latvijas biomedicīnas pētījumu integrācija Eiropas zinātnes telpā".